

IMPROVING MATHEMATICS IN KEY STAGES 2 AND 3

Summary of recommendations

1

Use assessment to build upon pupils' existing knowledge and understanding

- Assessment should be used not only to track pupils' learning but also to provide teachers with information about what pupils do and do not know.
- This should inform the planning of future lessons and the focus of targeted support.
- Effective feedback will be an important element of teachers' response to assessment.
- Feedback should be specific and clear, encourage and support further effort, and be given sparingly.
- Teachers not only have to address misconceptions but also understand why pupils may persist with errors.
- Knowledge of common misconceptions can be invaluable in planning lessons to address errors before they arise.

Use manipulatives and representations

- Manipulatives (physical objects used to teach maths) and representations (such as number lines and graphs) can help pupils engage with mathematical ideas.
- However, manipulatives and representations are just tools: how they are used is essential.
- They need to be used purposefully and appropriately to have an impact.
- There must be a clear rationale for using a particular manipulative or representation to teach a specific mathematical concept.
- Manipulatives should be temporary; they should act as a 'scaffold' that can be removed once independence is achieved.

solving problems

- If pupils lack a
 well-rehearsed and
 readily available
 method to solve a
 problem they need
 to draw on problem
 solving strategies to
- Select problem solving tasks for which pupils do not have readymade solutions.

make sense of the

unfamiliar situation.

- Teach them to use and compare different approaches.
- Show them how to interrogate and use their existing knowledge to solve problems.
- Use worked examples to enable them to analyse the use of different strategies.
- Require pupils to monitor, reflect on, and communicate their problem solving.

4

Enable pupils to develop a rich network of mathematical knowledge

- Emphasise the many connections between mathematical facts, procedures, and concepts.
- Ensure that pupils develop fluent recall of facts.
- Teach pupils to understand procedures.
- Teach pupils to consciously choose between mathematical strategies.
- Build on pupils' informal understanding of sharing and proportionality to introduce procedures.
- Teach pupils that fractions and decimals extend the number system beyond whole numbers.
- Teach pupils to recognise and use mathematical structure.

5

Develop pupils' independence and motivation

- Encourage pupils to take responsibility for, and play an active role in, their own learning
- This requires pupils to develop metacognition—the ability to independently plan, monitor and evaluate their thinking and learning
- Initially, teachers may have to model metacognition by describing their own thinking.
- Provide regular opportunities for pupils to develop metacognition by encouraging them to explain their thinking to themselves and others.
- Avoid doing too much too early.
- Positive attitudes are important, but there is scant evidence on the most effective ways to foster them.
- School leaders should ensure that all staff, including non-teaching staff, encourage enjoyment in maths for all children.

mathematics

- Tasks and resources are just tools—they will not be effective if they are used inappropriately by the teacher.
- Use assessment of pupils' strengths and weaknesses to inform your choice of task.
- Use tasks to address pupil misconceptions.
- Provide examples and non-examples of concepts.
- Use stories and problems to help pupils understand mathematics.
- Use tasks to build conceptual knowledge in tandem with procedural knowledge.
- Technology is not a silver bullet—it has to be used judiciously and less costly resources may be just as effective.

17

Use structured interventions to provide additional support

- Selection should be guided by pupil assessment.
- Interventions should start early, be evidence-based and be carefully planned.
- Interventions should include explicit and systematic instruction.
- Even the best designed intervention will not work if implementation is poor.
- Support pupils to understand how interventions are connected to wholeclass instruction.
- Interventions should motivate pupils—not bore them or cause them to be anxious.
- If interventions cause pupils to miss activities they enjoy, or content they need to learn, teachers should ask if the interventions are really necessary.
- Avoid 'intervention fatigue'. Interventions do not always need to be time-consuming or intensive to be effective.

8

Support pupils to make a successful transition between primary and secondary school

- There is a large dip in mathematical attainment and attitudes towards maths as children move from primary to secondary school.
- Primary and secondary schools should develop shared understandings of curriculum, teaching and learning.
- When pupils arrive in Year 7, quickly attain a good understanding of their strengths and weaknesses.
- Structured intervention support may be required for Year
 7 pupils who are struggling to make progress.
- Carefully consider how pupils are allocated to maths classes.
- Setting is likely to lead to a widening of the attainment gap between disadvantaged pupils and their peers, because the former are more likely to be assigned to lower group.