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 Background 

Protocol and SAP changes  

If any changes to the protocol impact on the SAP, these should be specified here. Changes 

made to the SAP after its initial publication should also be logged here. 

 The evaluation protocol (version 1.0) states: “We will use a school-level randomisation 

approach using a block design stratified by geographical area and either everFSM or 

attainment. We will model this process prior to randomisation and, if necessary amend 

the protocol in May 2017. … During 2016-17, we will investigate whether further 

stratification by school factors (e.g., FSM, GCSE, examination board) is necessary to 

achieve sufficiently balanced intervention and groups.” (p.14). As a result of this 

modelling, school randomisation was stratified by region (North/South England) and by 

school-level everFSM. 

 The evaluation protocol (version 1.0) states that randomisation would take place in 

Summer 2017 (p.13). In the event, due to recruitment difficulties, randomisation was 

conducted in two batches: 122 schools on 12th July 2017, and 3 on 18th September 2017. 
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Introduction  

“Young Enterprise: Maths in Context” is an intervention that seeks to improve children’s 

financial capability, and specifically their financial knowledge and understanding, applied 

numeracy and problem-solving skills. This large England-wide efficacy trial follows an earlier 

project funded by the London Schools Excellence Fund (PFEG, 2015). The earlier project 

involved a small-scale evaluation of the impact on student attainment involving comparison of 

the intervention group (260 students) to a control group (101 students) who were taught by the 

same teachers.1 The intervention group made greater gains on a levelled GCSE-based 

assessment.  

 

This statistical analysis plan outlines the planned analysis of a two-arm efficacy trial targeting 

secondary school pupils (Year 10) from 125 schools recruited. It will discuss the study design, 

randomisation process, calculation of the sample size, a mid-intervention report on recruitment 

and allocation and the primary and secondary outcome measures. It will also discuss our 

primary and secondary outcome analyses, effect size calculation, missing data and non-

compliance issues, and finally sub-group analyses. 

Study design 

Young Enterprise: Mathematics in Context is being evaluated using a two-arm randomised 

controlled trial with an intervention arm comprising of 63 secondary schools against a business-

as-usual control arm of 62 secondary schools.  

 

Students who are part of the Young Enterprise intervention group will receive a series of 10-

12 lessons, each focused on a specific area of mathematics in the context of financial capability 

from their mathematics teacher. To prepare them for delivering the intervention, each 

intervention school has identified a lead teacher. Lead teachers are expected to model the 

teaching approach by implementing the lessons and pedagogies introduced in the training in 

their own lessons and more widely within their schools by providing ‘cascade’ training to at 

least three other Year 10 mathematics teachers.  

 

Incentives have been offered to schools allocated to the control group as detailed in the 

evaluation protocol. These schools will be provided with a payment of £1000 on receipt of final 

GCSE data in Autumn 2019. 

                                                      
1 

https://www.london.gov.uk/sites/default/files/pfeg_london_lead_teachers_in_financial_mathematics_final_repor

t.pdf 
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For quantitatively evaluating the impact Young Enterprise: Mathematics in Context, we will 

use KS2 results as the pre-test, and will request GCSE Mathematics score as part of the 

National Pupil Database extract, along with Uniform Marking Scale (UMS) scores from 

schools. Subject to a satisfactory response rate, in order to improve discrimination and 

strengthen the statistical modelling, we will use UMS scores to assess the primary outcome as 

discussed in the evaluation protocol. We propose to impute UMS scores if necessary and 

consider that it is reasonable to impute where missingness on the UMS scores is up to 10%. 

However, if the response rate is such that attrition would affect the security rating of findings 

(where attrition is > 20%), we will use GCSE numerical grades as the primary outcome. 

 

In the summer of 2018, we will conduct a dummy run of the GCSE UMS and item-by-item 

data collection process with several secondary schools that are independent of the project in 

order to ensure that extensive data collection of finer grained GCSE data can be undertaken 

effectively with trial schools. We will also explore the possibility of imputing GCSE UMS data 

as we should be able to build a strong predictive model with the inclusion of GCSE numerical 

grade and prior attainment data – e.g. KS2 and KS1 scores, and include the results as a 

sensitivity analysis in the final report. Given that we need to scope the potential of these 

approaches, we plan to update the SAP and protocol where appropriate later in 2018 (See 

missing data section for a further discussion). 

Calculation of sample size 

We performed two sets of power calculations for the primary and secondary outcomes. We 

used Raudenbush et al.’s (2011) Optimal Design software to estimate statistical power on the 

basis of recruiting schools in 2-arm and a 3-level cluster randomised  trial with the 

intervention at level 3 (i.e. the school level). The structure of the intervention is made up of 3 

levels – students are clustered in classes by teachers which are then further clustered in 

schools. 

As the research design involves cascade training to multiple teachers, and the likely number 

of students involved is very high, the greatest change in power is from adding additional 

schools and so we varied the number of schools that would be part of the intervention.  

We fixed the following parameters: =0.05 (which refers to the probability of rejecting the 

hypothesis tested when it is true – 5%), 25 students per class and 4 classes per school, intra-

cluster correlation for level 2 (class teachers) =0.05 and for level 3 (schools) =0.165 (which 
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refers to the variance between participants with the same teacher and for those in the same 

school). Here we are assuming that as students are generally in sets within mathematics, this 

should reduce the variation observed at the class-level. Since the EEF (2015) guidance on 

ICC indicate an ICC for GCSE mathematics of 0.165, we consider our assumptions overall to 

be relatively conservative.2 We also included an additional pre-test (KS2 Mathematics score) 

covariate as a school level aggregate with the assumption that the post and pre-test have a 

correlation of 0.7 setting the level 3 variance explained at 0.702=0.49. This has the effect of 

reducing the overall variance and boosting the expected statistical power of the study. 

This produces an estimated minimum detectable effect size (MDES) of 0.167 (for 130 

schools) and 0.175 (for 120 schools). For the FSM sub-group analysis, a conservative 

estimate of 8 FSM students per class (approximately 30%) produces an MDES of 0.18. 

Young Enterprise: Mathematics in Context Power Analysis  

 120 Schools 125 Schools 130 Schools 

 

All pupils with outcome only 0.222 0.217 0.213 

FSM pupils only and KS2 

Covariate 

0.188 0.183 0.180 

All pupils with KS2 covariate 0.174 0.171 0.167 

Table 1: Minimum Detectable Effect Size (MDES) for outcome only and with PTM 

covariate. Estimates are subject to rounding. 

Randomisation 

All state schools were eligible as long as the school had not already taken part in Young 

Enterprise's previous Maths in Context trial, funded by London Schools Excellence Fund 

pilot (PFEG, 2015) and could provide a minimum of four classes of year 10s who are eligible 

for the intervention. Recruitment aimed to maximise the number of schools with an above 

average proportion of students qualifying as everFSM in order that the proportion in the 

sample as a whole was at least 29.3%. In addition, in order to be entered into the 

randomisation the schools had to provide: 

• A signed Memorandum of Understanding 

                                                      
2 Education Endowment Foundation. (2015). Intra-cluster correlation coefficients.    
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• Confirmation that consent forms have been sent out and any opt-outs 

• Provision of pupil data for those identified as eligible: Class teacher ID, Unique Pupil 

Number (UPN), Forename, Surname, Date of Birth and Gender 

• Pre-test data for all eligible pupils (financial capabilities assessment only) 

• Names of lead teachers 

Randomisation took place in July and September 2017, with baseline testing on the financial 

capabilities assessment taking place in June prior to schools being randomised. Due to issues 

of recruitment we randomised schools into the two conditions in two batches:  122 schools on 

12th July 2017 using the block approach outlined below, and 3 schools on 18th September 

using a simple randomisation approach3. 

The evaluation protocol (version 1.0) proposed a school-level randomisation approach using 

a block design stratified by geographical area and either everFSM or attainment. The 

geographical location of schools was more diverse than planned, and, hence, following 

discussion with the developer, we decided to stratify schools into just two regions: North and 

South. Hence, an eight-block design was used. For the second batch, a simple randomisation 

procedure was adopted due to the small number of schools involved. 

The main block randomisation procedure incorporated three core steps (see appendix 1), with 

an additional two error checking steps. First, we pre-processed the school-level data - 

checking school names, Unique Reference Numbers and postcodes against Edubase records. 

Second, we set up a split function in R which worked on the basis of simple randomisation to 

split schools equally into intervention and active control arms (for use within the everFSM 

and North-South blocks). Third, we then randomised the schools, using a random number 

generating (RNG) seed. This was the value of the FTSE 250 at midday on the day of 

randomisation (12th July 2017) (Seed=19267) which we used for both rounds of 

randomisation.  

  

                                                      
3 Our aim here was to maximise the number of schools in the trial given our aim of recruiting 130 schools, but 

with 3 schools a second blocked randomisation approach was not possible. 
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Follow-Up 

 

 

 

 

 

 

 

  

Assessed for eligibility (n=251) 

Excluded (n=117) 

Declined to participate (n=9) 

Analysed (n=) 

 Excluded from analysis (give reasons) (n=) 

Lost to follow-up (give reasons) (n=) 

Discontinued intervention (give reasons) (n=) 

Allocated to intervention (n=63) 

 Received allocated intervention (n=) 

 Did not receive allocated intervention 

(withdrew after randomisation, but before 

notification) (n=) 

Lost to follow-up (give reasons) (n=) 

Discontinued active control (give reasons)  

(n=) 

Allocated to active control (n=62) 

 Received allocated active control (n=) 

 Did not receive allocated active control 

(give reasons) (n=) 

Analysed (n=) 

 Excluded from analysis (give reasons) 

(n=) 

 

Allocation 

Analysis 

Follow-Up 

Schools approached (n=3000 approximately) 

Schools Randomized (n=125) 

Excluded (n=28) due to duplicate 

applications 

 

Young Enterprise Control 

Enrolment 

 Submitted Expression of Interest 

(n=279) 
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Outcome measures 

Primary outcome 

As mentioned above we will use GCSE mathematics as the primary outcome measure. In order 

to improve discrimination and strengthen the statistical modelling, where possible we will use 

GCSE Uniform Marking Scale (UMS) scores rather than grades and these will collected from 

directly from schools (subject to satisfactory returns).4 We will use KS2 national test scores in 

mathematics (KS2_MATPOINTS) as a pre-test score for pupils, which will be matched to the 

UMS score through an extract of the National Pupil Database.  

Secondary outcomes 

We will use two secondary outcome measures: 

I. An amalgamated scale for financial and problem-solving items from the GCSE 

mathematics papers. We will collect item-by-item data directly from schools. 

II. A bespoke financial knowledge and understanding instrument based on the MAS 

Financial Capability Outcomes Framework (Bagwell et al, 2014). This secondary 

measure was administered by schools in May / June 2017 prior to randomisation, and 

will then be re-administered as a post-test in September 2018. As a secondary 

measure, we do not consider independent administration (or blinding) to be necessary. 

Analysis 

Our analysis will investigate the effect of Young Enterprise: Mathematics in Context against 

the business-as-usual control condition on the basis of intention-to-treat (ITT) using a linear 

multilevel model estimated by Bayesian Inference. While we expect that point estimates and 

intervals will remain broadly similar between classical and Bayesian approaches when using 

diffuse or weakly informative priors, Bayesian inference still offers advantages over classically 

derived estimates. Firstly, the assumption of repeated sampling is not needed, in that the 

posterior estimates are based on sequential updating – we update our prior knowledge with new 

data. This makes estimates more straightforward to interpret. Secondly, Bayesian models 

average over uncertainty (between the prior information and data) leading to more conservative 

estimates – particularly in situations with small sample sizes. Thirdly, the posterior distribution 

allows for a much more straightforward interpretation of models with interaction terms as the 

                                                      
4 GCSE grades are not designed to form a linear scale. The use of two tiers creates a censored variable for sub-

populations of the year group.  In order to simplify the modelling, we will use the UMS score, which can be 

modelled using linear regression techniques. The UMS score is a tool that all exam boards use to standardise 

marks awarded on papers across the different exam boards and paper tiers. The conversions are provided by the 

exam boards on their websites. For example: http://www.ocr.org.uk/i-want-to/convert-raw-marks-to-ums/ 
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posterior predictive distribution can be analysed using different manipulations of the model 

predictors. Lastly, we can make predictions for new cases – e.g. schools and fully take account 

of the predictive uncertainty.  

We will fit several models of increasing complexity analysing their fit using Leave-one-out 

Cross Validation (LOO-CV). However, our primary varying intercepts model (random effects) 

on which the impact of the intervention will be assessed is as follows.  

Our notation is loosely based on the general practice of the Centre for Multilevel Modelling at 

the University of Bristol. The individual level of our model has a grand mean of the GCSE 

Mathematics score post-test (represented by β0), which we allow to vary by membership of 

class and School (represented by the intercept adjustments v0k and u0jk); an individual-level 

binary treatment covariate where 0 represents those pupils who received the control condition 

and 1 which represents those pupils who received the Young Enterprise: Mathematics in 

Context intervention; a normally distributed and mean-centred pre-test covariate, two 

randomisation covariates – everFSM and North-South location (3 and 4)   and lastly an error 

term (εijk). 

 

 

As discussed in the software section below, it will be fitted using Stan, an open source 

Hamiltonian Markov Chain Monte Carlo (MCMC) sampler within R using weakly informative 

priors (WIP). The aim of using WIP is to “…to ‘regularize’ the posterior distribution, that is, 

to keep it roughly within reasonable bounds—but without attempting to fully capture one’s 

scientific knowledge about the underlying parameter” (Gelman et al, 2014, 51). Our starting 

point will be the default priors – normal priors on the betas and half-Cauchy’s on the variance 

parameters. However, to ensure consistency it will also be fitted using MLwiN’s Gibbs sampler 

using diffuse priors (see Browne, 2015, 4-5), as well as classically using lme4’s Maximum 

Likelihood and MLwiN’s IGLS algorithm.  

We will report Bayesian credible intervals for the main report, but we will also fit the models 

classically to allow comparison with other EEF trials and will discuss any significant variation 

between the Bayesian and classical estimates in the sensitivity analysis. 
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Interim analyses 

We are currently undertaking data simulations to test our Bayesian models, the generated effect 

size quantities, and the impact of varying forms of missing data on our power analyses. A 

separate technical report will be finalised in due course. 

  

Imbalance analysis 

Our initial analysis of imbalance shows good balance between treatment and control with 

regards to our two blocking variables school-level percentage of FSM and the regional 

dichotomy of North vs. South. We will extend this analysis further to check imbalance once 

the NPD sweep is complete.  

 

School-Level Background Characteristics Imbalance Analysis 

 Treatment Control 

Percentage FSM Ever M=30.47  

SD=15.17 

  

M=30.52  

SD=15.57 

 

Percentage of Schools in North 

and South 

North=56% 

South=44% 

North=56% 

South=44% 

   

Table 3: Initial imbalance analysis for school-level characteristics 

 

Missing data  

We have designed our data collection procedures to minimise missingness by collecting 

additional data from schools (such as FSM), liaising further with schools to address missing 

data when returning to collect additional data, and providing a sufficient incentive to collect 

the final round of data at the end of the project. However as outlined above, the greatest threat 

relating to missing data is that we fail to collect sufficient UMS data from schools in Autumn 

2019.  If this is the case, we will use GCSE grades collected from the NPD for the primary 

analysis. In addition, we will impute UMS scores and report the results of this imputed dataset, 

comparing these to the primary analysis. 

 

Our report will present the results from the complete case analysis (fully observed cases only). 

However, we will also provide a sensitivity analysis which will examine the robustness of the 
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reported results against multiply imputed data examining the point estimates and credible 

interval coverage. We intend to use imputation to investigate the robustness of the reported 

results whatever the level of missingness.  It should be noted that there are no agreed cut-offs 

or thresholds for acceptable percentages of missingness (Dong and Peng 2013) and as 

Tabachnick and Fidell (2012) argue, the pattern of any missingness is more critical than its 

extent, although we will bear in mind the thresholds in the EEF Security of Findings Guidance.  

 

In a Bayesian framework, there are two main options for the handling of missing data. Firstly, 

missing data can be treated as another random parameter and estimated by building in a missing 

data sub-model. Secondly, multiple datasets can be imputed by a separate statistical package, 

then each MCMC chain can be assigned an imputed dataset and the posterior simulations mixed 

together. While both Stan and MLwiN can handle this process relatively straightforwardly, 

Stan can only impute covariates with missingness that are continuous, and it is easier to 

incorporate auxiliary variables using a separate imputation procedure. The likelihood is that 

minor amounts of missing data will be confined, at least in the primary model to the pre and 

post-test, but for consistency and compatibility with the classically derived estimates the most 

appropriate approach is to use a separate imputation procedure. 

 

We will use the software Stat-JR and its new n-level template which is based on the joint 

modelling that assumes a multivariate normal distribution (MVN), and is capable of fully 

imputing our 3+level datasets. While it is impossible to determine the missingness mechanism 

we will use the imputation tools within Mice, an imputation package within R (van Buuren & 

Groothuis-Oudshoorn, 2011), to conduct descriptive analyses and to construct a drop-out 

model. The final imputation model will make full use of the additional auxiliary data (at the 

individual level – KS1 scores and EYFS data, and at the school-level proportion of pupils that 

have ever been FSM, KS1, KS2 and GCSE pass rate scores) within the NPD to increase the 

plausibility of the Missing at Random assumption. As discussed in Gelman and Hill (2007: 

531) it is impossible to be absolutely sure that data is Missing at Random and so it is important 

to increase the plausibility of this mechanism by including relevant predictors in an imputation 

analysis. Logistic regression analyses of missingness will not give us a definitive indication of 

the mechanism, but we will use this approach to help select appropriate auxiliary variables, 

along with appropriate correlation analyses. We will also check the plausibility of imputed 

values using the diagnostic techniques outlined in Abayomi, Gelman and Levy (2008).5  

                                                      
5 These diagnostic techniques include overlaid density comparisons between observed and multiply imputed 

datasets; numerically comparing the empirical distributions of observed and imputed data using the 



12 
 

 

Non-compliance with intervention 

The following definition of compliance and related evidence has been agreed with the 

developer: 

 Adequate staffing: School identified one lead teacher, and (at least) three other 

teachers, and associated Y10 classes [Full compliance required, aside from schools 

with fewer than 4 teachers and classes; Evidence: School data / developer records / 

checks by Consultants] 

 Attendance at training: Lead teachers attend 1 day training [Full compliance required; 

Evidence: developer attendance records]   

 Cascade training: Lead teachers provide cascade training for three other teachers [Full 

compliance required; Evidence: Teacher survey / checks by Consultants]  

 Consultant support: Consultants provide three days equivalent time of mentoring 

support delivered over up to eight visits [Full compliance required: Evidence: 

developer records]  

 Lessons: All classes should be taught the Maths in Context lessons [Minimum / optimal 

compliance: 10 /12 lessons; Evidence: developer records / checks by Consultants / 

teacher survey]  

 

We will investigate the effects of non-compliance by using an instrumental variables (IV) 

approach  

 

We will also investigate the effects of “non-compliance” in the control group. The 

Mathematics in Context lessons are not publically available, so schools in the control group 

will not have access to the intervention materials. However, there may be some schools, or 

teachers, in the control group who teach significant amount of financial mathematics, and we 

will attempt to capture these “always compliers" using survey data. If sufficiently robust data 

are available, we will investigate the effect of this non-compliance in the control group using 

a per-protocol approach. 

 

                                                      
Kolmogorov-Smirnov test; and bivariate scatter plots to check for internal consistency of missing and observed 

observations. 
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Secondary outcome analyses 

As discussed above, we have two secondary outcome measures – the amalgamated scale for 

financial and problem-solving items from the GCSE mathematics papers, and a bespoke 

financial knowledge and understanding instrument. We will model these two outcomes 

separately using a similar model specification to the primary outcome. For the amalgamated 

scale of financial and problem-solving items, we will use the KS2 mathematics result as the 

pre-test. For the bespoke financial knowledge and understanding instrument, we have 

designed and piloted a pre-test and will use this in place of the KS2 mathematics result. 

Additional analyses 

As discussed in the non-compliance section we will fit further models incorporating dosage 

and group-level predictors such as lead vs. cascade trained teacher, School KS2 average and 

school-level attainment, and fidelity information to investigate the sensitivity of the 

estimates. 

We will also explore modelling the bespoke financial knowledge and understanding 

instrument simultaneously with our main outcome using a multivariate multilevel model (also 

referred to as a multiple outcome model (Gelman et al. 2012)). We have chosen to limit this 

as the first of the two secondary outcomes is derived from the main GCSE outcome variable. 

This model adds an additional level of clustering to our previous analyses to account for 

multiple outcomes – the UMS GCSE Mathematics score and the post-intervention financial 

knowledge and understanding survey. Responses to the multiple outcomes are set at the first 

level providing the structure of the multivariate model, with level two being pupils, level 

three being classes and level four being schools. This approach offers four significant 

advantages in understanding the relationship between GCSE mathematics performance and 

financial understanding. Importantly, this model allows for modelling correlations between 

dependent variables; the standard errors of specific effects tend to be smaller; it allows for the 

direct comparison of testing effects on the dependent variables; and helps to avoid the need 

for multiple comparisons adjustments such as the Bonferroni correction (Snijders and Bosker 

2011, p. 283). Significantly, the second and third advantage will potentially allow for 

stronger conclusions to be drawn, and additionally the third advantage will provide us with 

the opportunity to test the relationship between the financial knowledge and understanding 

instrument and the GCSE Mathematics result. The formula for our secondary outcome 

analysis is presented below. 
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We remain as consistent in notation as possible, again being broadly based on the standard 

notation of the Centre for Multilevel Modelling at the University of Bristol. We gain two 

additional elements - Z1ijkl which is indicator where 1 is the Progress Test in Mathematics and 

0 is the Mathematics Attitudes and Anxieties Questionnaire scale; and Z2ijkl which is 1 − 

Z1ijkl. We estimate two intercepts - one for each outcome variable, denoted by β01 and β02; 

two treatment effects (one for each outcome variable) - denoted by β11 and β21; two pre-test 

effects - again one for each outcome variable, denoted by β21 and β22; and four randomisation 

stratifiers – two for each outcome variable denoted by β13, β14, β23 and β24.  As there is no 

level 1 variation specified because level 1 exists solely to define the multivariate structure, 

individual level error terms are denoted by the notation u, class-level error terms are now 

denoted by the notation v and School-level error terms are denoted by the notation f. Error 

term levels are estimated for both outcome variables. 

 

In the group level models we assume bivariate normal distributions, with means of 0, and 

estimate three variance-covariance matrices. Diagonal elements are the variances for the two 

outcome variables at the individual, class and school-level, and the off-diagonal elements are 

the correlations between the terms. 

 

 

Subgroup analyses 

Additional models of greater complexity will be fitted which will include sex of participant, 

‘FSM ever’ entitlement (defined as any pupil who has ever been classified as in receipt of 

free school meals), foundation or higher tier paper, as well as interactions between the two 

original data level variables of treatment and pre-test and the additional sub-group variables. 

Finally, we will add appropriate group-level predictors including whether the teacher was a 

school-lead or cascade trained and students’ GCSE examination tier. 
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Software 

As noted above, while the intention is to fit these models using Bayesian inference, we will fit 

the model classically using lme4 and MLwiN (for consistency with other EEF trials) before we 

refit the model using linear multilevel/hierarchical regression modelling estimated by Bayesian 

inference using a combination of the EEFanalytics package, STAN and MLwiN (this will be 

to check the overall consistency in our inferences and to further test and develop the 

EEFanalytics package in conjunction with the University of Durham). 

Effect size calculation   

We will use the standard practice of existing EEF trials in reporting effect sizes to calculate 

using total variance. The formula is presented below: 

 

Effect size quantities will be computed directly in Stan within the “generated quantities” of 

the model. In MLwiN, effect sizes will be computed from the saved MCMC simulation 

values within R and from the classically derived estimates in lme4, these will be computed 

using the same methodology, but through the sim() function from the Applied Regression 

Modelling package (arm) in R. Across all three processes, credible/confidence intervals can 

be read off the summary report. 

Report tables 

 We will report ICC statistics including credible intervals using the standardised EEF tables. 

Minimum detectable effect size at different stages 

Stage 

N [schools/ 
pupils] (n= 

intervention
; n=control) 

Correlatio
n between 

pre-test 
(+other 

covariates
) &  post-

test 

IC
C 

Blocking/  
stratificatio

n or pair 
matching 

Powe
r 

Alph
a 

Minimum 
detectabl
e effect 

size 
(MDES) 

Protocol        

Randomisatio
n 

       

Analysis (i.e. 
available pre- 
and post-test) 
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Baseline comparison 

Variable Intervention group Control group 

School-level 
(categorical) 

n/N (missing) Percentage n/N (missing) Percentage 

     

 
 
 

    

 … … … … 

School-level 
(continuous) 

n (missing) [Mean or median] n (missing) [Mean or median] 

     

     

 … … … … 

Pupil-level 
(categorical) 

n/N (missing) Percentage n/N (missing) Percentage 

     

     

 … … … … 

Pupil-level 
(continuous) 

n (missing) [Mean or median] n (missing) [Mean or median] 

     

 

Primary analysis 

 Raw means Effect size 

 Intervention group Control group   

Outcome 
n 

(missing) 
Mean (95% CI) 

n 
(missing) 

Mean 
(95% CI) 

n in model  
(intervention; 

control) 

Hedges g  
(95% CI) 

p-
value 

        

        

 … … … … … … … 
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Appendix 1 

Example code from randomisation blocked design using everFSM and North vs. South: 

 

census <- subset(census, select=c(URN, LA, ESTAB, PNUMFSMEVER)) 

attainment <-subset(attainment, select=c(URN, LEA, ESTAB, PTL2BASICS_LL_PTQ_EE)) 

Schools<- merge(Schools, edubase, by=c("URN"), all.x=TRUE) 

Schools<- merge(Schools, census, by=c("URN"), all.x=TRUE) 

Schools<- merge(Schools, attainment, by=c("URN"), all.x=TRUE) 

Schools <-subset(Schools, select=c(URN, School.Name, LA.ESTAB, GOR..name., PNUMFSMEVER, 

PTL2BASICS_LL_PTQ_EE)) 

colnames(Schools)[4] <- "GOR" 

Schools$GOR <- factor(Schools$GOR) 

Schools$PNUMFSMEVER <- as.numeric(sub("%","",Schools$PNUMFSMEVER)) 

 

round(Schools$PNUMFSMEVER) 

ApplyQuantiles <- function(x) { 

  cut(x, breaks=c(quantile(Schools$PNUMFSMEVER,  probs = seq(0, 1, by = 0.25))),  

      labels=c("0-25","25-50","50-75","75-100"), include.lowest=TRUE) 

} 

 

Schools$Quantile <- sapply(Schools$PNUMFSMEVER, ApplyQuantiles) 

 

FSM1_N <-subset(Schools, Schools$Quantile=="0-25" & Schools$NorthSouth=="North") 

FSM2_N <-subset(Schools, Schools$Quantile=="25-50" & Schools$NorthSouth=="North") 

FSM3_N <-subset(Schools, Schools$Quantile=="50-75" & Schools$NorthSouth=="North") 

FSM4_N <-subset(Schools, Schools$Quantile=="75-100" & Schools$NorthSouth=="North") 

FSM1_S <-subset(Schools, Schools$Quantile=="0-25" & Schools$NorthSouth=="North") 

FSM2_S <-subset(Schools, Schools$Quantile=="25-50" & Schools$NorthSouth=="South") 

FSM3_S <-subset(Schools, Schools$Quantile=="50-75" & Schools$NorthSouth=="South") 

FSM4_S <-subset(Schools, Schools$Quantile=="75-100" & Schools$NorthSouth=="South”) 

 

rm(attainment, census, edubase) 

 

 

splitdffsm1 <- function(dataframe, seed=NULL) { 

  if (!is.null(seed)) set.seed(seed) 

  is.odd <-function(x) !x %% 2 == 0 

  index <- 1:nrow(dataframe) 

  odd <- is.odd(length(index)) 

  noise <-rnorm((nrow(dataframe)),0,1) 

  if (odd==TRUE) {size <- round(trunc(length(index)/2) + noise[1])} else { size <- trunc(length(index)/2)} 

  interventionindex <- sample(index, 16) 

  Intervention <- dataframe[interventionindex, ] 

  Control <- dataframe[-interventionindex, ] 

  list(Intervention=Intervention,Control=Control) 

} 

 

splitdffsm2 <- function(dataframe, seed=NULL) { 

  if (!is.null(seed)) set.seed(seed) 

  is.odd <-function(x) !x %% 2 == 0 

  index <- 1:nrow(dataframe) 

  odd <- is.odd(length(index)) 

  noise <-rnorm((nrow(dataframe)),0,1) 

  if (odd==TRUE) {size <- round(trunc(length(index)/2) + noise[1])} else { size <- trunc(length(index)/2)} 

  interventionindex <- sample(index, 15) 

  Intervention <- dataframe[interventionindex, ] 

  Control <- dataframe[-interventionindex, ] 

  list(Intervention=Intervention,Control=Control) 

} 

 

splitdffsm3 <- function(dataframe, seed=NULL) { 

  if (!is.null(seed)) set.seed(seed) 
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  is.odd <-function(x) !x %% 2 == 0 

  index <- 1:nrow(dataframe) 

  odd <- is.odd(length(index)) 

  noise <-rnorm((nrow(dataframe)),0,1) 

  if (odd==TRUE) {size <- round(trunc(length(index)/2) + noise[1])} else { size <- trunc(length(index)/2)} 

  interventionindex <- sample(index, 15) 

  Intervention <- dataframe[interventionindex, ] 

  Control <- dataframe[-interventionindex, ] 

  list(Intervention=Intervention,Control=Control) 

} 

 

splitdffsm4 <- function(dataframe, seed=NULL) { 

  if (!is.null(seed)) set.seed(seed) 

  is.odd <-function(x) !x %% 2 == 0 

  index <- 1:nrow(dataframe) 

  odd <- is.odd(length(index)) 

  noise <-rnorm((nrow(dataframe)),0,1) 

  if (odd==TRUE) {size <- round(trunc(length(index)/2) + noise[1])} else { size <- trunc(length(index)/2)} 

  interventionindex <- sample(index, 15) 

  Intervention <- dataframe[interventionindex, ] 

  Control <- dataframe[-interventionindex, ] 

  list(Intervention=Intervention,Control=Control) 

} 

 

splits_1 <- splitdffsm1(FSM1_N) 

splits_2 <- splitdffsm2(FSM2_N) 

splits_3 <- splitdffsm3(FSM3_N) 

splits_4 <- splitdffsm4(FSM4_N) 

splits_5 <- splitdffsm5(FSM1_S) 

splits_6 <- splitdffsm6(FSM2_S) 

splits_7 <- splitdffsm7(FSM3_S) 

splits_8 <- splitdffsm8(FSM4_S) 

 

 


